TOPICS IN COMPLEX ANALYSIS @ EPFL, FALL 2024
SOLUTION SKETCHES TO HOMEWORK 5

MATHIAS BRAUN AND WENHAO ZHAO

Homework 5.1 (Examples of infinite products of functions*). Examine for which z € C the
following products converge absolutely and determine the largest open set U C C on which
they converge locally normally.

Homework 5.2 (Further practice on infinite products). Show the product
= Z
H — 2\ ,-z/n
(z) =z 1_[ (1 + n) e
n=1
converges locally normally on C'.

Solution. As we shall see it suffices to bound the quantity (1 — z) e* — 1 on B;(0). Using
the series expansion of the exponential function we have

ok X k+l Xk ok
- B z i (1-k) (1 -k)
(-9 —1=D 5 =) =, — =2,
k=1 k=0 k=1 k=2
Taking the modulus yields
[(1-z)e*—1] <i o = |z el?.
= (k=2)!

In particular, for every z € B(0) we have the (nonoptimal) estimate
[(1-2)e*—1| <elz]’

Next fix a compact set K C C. Then there exists n(K) € N such that for all n > n(K) we
have —z/n € B(0) for every z € K. We conclude

1
Z sule+£]e_z/"—l‘Sesup|z|2 Z — <.
n>n n €K nx>n(K) n

By definition this shows the locally normal convergence of the infinite product H.
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10ne can show that the limit v = limp e X7, 1/k — log(n) exists (which is called Euler—Mascheroni
constant). Then I'(z) := e” Y% /H (z) yields an alternative representation of the Eulerian '-function for every
z € Cwith Rz > 0.
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Homework 5.3 (Sine product formula). The goal of this exercise is to derive the following
product formula for every z € C:

o0 2
z

i = | | 1— _]
sin(nz) = nz L] [ "

This will be done in several steps.
a. Use the partial fraction decomposition of 72 /sin(xz) from Homework 3.2 to show
the following identity for every z € C \ Z, with a suitable notion of convergence for
the series on the right hand side?:

meot(mz) = — +
(m2) = Zl 2 -n?
b. For n € N, define the function f,: C — C by f,(z) := 1 — z2/n*>. Compute the
logarithmic derivative f’/f for the assignment f(z) := 7z [],_, fn(z)
c. Conclude by comparing suitable terms.

Solution. a. Recall cot(rz) = cos(nz)/sin(nz) for every z € C\ Z, thus
meot(nz)’ = —n* sin’ (r2) + COSZ(]TZ) = ;rz .
sin®(72) sin“(7rz)

Inserting the result from Homework 3.2, we deduce every z € C\ Z obeys

. 1 ) 1 _ 1 Z +n
meot(nz) = Z(z—n)z Z(z—n)z (z+n)? 2 Z(Z -n?

neN

As shown in Homework 3.2, the right-hand side series converges locally uniformly (and
locally normally, which allows us to rearrange terms as above) on C\ Z. AsC\ Z is a
domain we can apply the hint to the sequence (gx)reN, Where the function g : C\ Z — C
is defined by the assignment

k
1 Z
7)i=—+2 —-—.
gi(2) = - ;zz—nz

However, it is quite difficult to evaluate the limit of g (z¢) as k — oo for zg € C \ Z as
k — +co. Hence we use the hint in an abstract way. Note that for z € C \ Z, we have

, 2 -n?- 22 +n?
8i(2) = - +22 (22 - n? 2 Z(z -n?

In particular, we obtain g; — 7 cot(nr -)" locally uniformly on C \ Z as k — co. Moreover,
the sequence (gx(1/2))xen is bounded. Hence, by compactness there exists ¢ € C such that
gx(1/2) — c as k — oo along a subsequence we do not relabel’. By the hint,

. bis
khm gr =ncot(m-)+c—mcot (E)
—————
=ico
locally uniformly on C \ Z, so that
k

zeot(nz) = —+Z2 S+ co. (5.1)
12 —n

2Hint. You may use the following fact without proof. If D c C is a domain, (fj)neN iS a sequence of
continuously differentiable functions f,,: D — C, f: D — C is continuously differentiable, f, (zo) — f(z0) as
n — oo for some zg € D, and f}, — f’ locally uniformly as n — oo, then f;, — f locally uniformly as n — co.

3Later the conclusions will be the same for all subsequences. This will show convergence of the entire sequence,
as discussed in the lecture.
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We claim ¢y = 0. To this aim, we observe note that & cot(nz) has a first-order pole in
z = 0. Hence its Laurent series at the origin reads

(9]

nmeot(nz) = Z aj 7.
j=1
From (5.1) we obtain a_; = 1 and ag = ¢g. Another formula for ag is
nz ] o [cos(nz) sin(nz) —
720

sin®(72)

d . .
agp = —| zmcot(nz) = lim 7 lim [COt(ﬂZ) -
z—0 z-0

dz|y sin?(7z)

Since cos(nz) = 1 + 0(z?) as z — 0 and sin(nz) = 7z + O(z%) as z — 0, we obtain
cos(nz) sin(nz) — 1z = O(z%) as z — 0. The above equality yields ag = co = 0 as claimed.
b. Note that for z € C \ {+n} we have
) 2z
fa(m)  2-n?
Next, we argue the product f = nz [], | f, converges locally normally on C. Indeed, let
K c C be compact. Then

sup|—‘ < sup lz)? Z— < oo.

Hence we can apply Proposmon 3.12 from the lecture notes, ylelding

=—+ =—+
f@ 2z Zfuld) z
for every z € C \ Z, where we used that Z( f) = Z by Lemma 3.11.
c. Note that the logarithmic derivative of the assignment /(z) := sin(nz) on C \ Z is
given by 7 cot(nz). Hence a. and b. imply

h/ 3 fl

ho f
on the domain C \ Z. In particular, on this set we have

[h]' W f-hf
f f?

Thus there exists a constant ¢ € C such that & = ¢f on C \ Z and by the identity theorem
this extends to the entire complex plane. In order to conclude we have to show ¢ = 1. To
this aim, note that whenever z # 0 we can write

ff@) 1 N a1 Z
Zz_nz

=0.

2

sin;;rz) Aﬁ [] B %]

Letting z — 0 we deduce ¢ = 1, which finishes the proof.

Homework 5.4 (Consequences of the sine product formula). Use the product formula from
the previous exercise to show the following statements.

o)

n 4p?
a §_B4n2—1'

b. cos(nz) = ﬁ[ 1)2

n=1
(o)
e
= 5 -
n:ln

“Hint. Use a Taylor expansion.
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Solution. a. We insert z = 1/2 into the sine product formula

i 2
sin(nz) = ﬂzl_[ [l - %]
n=1

and obtain
4n* -1
2 H A
Taking the inverse of the infinite product (Wthh is allowed term by term as the limit is not
zero) we deduce the claimed formula.

b. Note that by the double angle formula, every z € C satisfies sin(2z) = 2 sin(z) cos(z).
(This is well-known for z € R and extends to z € C by the identity theorem. Thus,

2

sin(nrz) cos(nz) = ‘27” H [1 B _]

”rzﬁ{ (2n)2] l—” (2n - 1)2]

n=1

. = 47
= sin(nz) H [1 - ﬁ]

The claim follows from the identity theorem.
c. Let us rewrite the product formula as a Taylor series. Locally uniformly on C,

nlll_l)n Z( l)n 1 (”Z) "

1
= sin(nz)

m 2

. Z

= lim 7rz| | 1- -

m—+0o n
n=1

m. 9
=nz— lim [ﬂzz%+gm(z)],

@n-1)!

m—-+co

where g,,(z) is the remainder. Since the series 3" 72 /n? converges locally uniformly, also
gm converges locally uniformly on C to some function g: C — C. Moreover, each g, has
a zero of order 5 in zero, so that gfn (0) =0forall 0 < k < 4. From Theorem 1.5 in the
lecture notes we deduce g has a zero of order at least 5 in zero. Hence we can write

Z( H" l(ﬂz) —nz—ﬂz3z—+2anz

Comparing the coefficient of z3 yields the claim.



