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Homework 5.1 (Examples of infinite products of functions∗). Examine for which 𝑧 ∈ C the
following products converge absolutely and determine the largest open set𝑈 ⊂ C on which
they converge locally normally.

a.
∞∏
𝑛=1

(1 + 𝑧𝑛).

b.
∞∏
𝑛=1

[
1 + 𝑧

𝑛

𝑛!

]
.

c.
∞∏
𝑛=1

cos(2−𝑛𝑧).

Homework 5.2 (Further practice on infinite products). Show the product

𝐻 (𝑧) = 𝑧
∞∏
𝑛=1

(
1 + 𝑧

𝑛

)
𝑒−𝑧/𝑛

converges locally normally on C1.

Solution. As we shall see it suffices to bound the quantity (1 − 𝑧) e𝑧 − 1 on 𝐵1 (0). Using
the series expansion of the exponential function we have

(1 − 𝑧) e𝑧 − 1 =

∞∑︁
𝑘=1

𝑧𝑘

𝑘!
−

∞∑︁
𝑘=0

𝑧𝑘+1

𝑘!
=

∞∑︁
𝑘=1

𝑧𝑘 (1 − 𝑘)
𝑘!

=

∞∑︁
𝑘=2

𝑧𝑘 (1 − 𝑘)
𝑘!

.

Taking the modulus yields

| (1 − 𝑧) e𝑧 − 1| ≤
∞∑︁
𝑘=2

|𝑧 |𝑘
(𝑘 − 2)! = |𝑧 |2 e |𝑧 | .

In particular, for every 𝑧 ∈ 𝐵1 (0) we have the (nonoptimal) estimate

| (1 − 𝑧) e𝑧 − 1| ≤ e |𝑧 |2.

Next fix a compact set 𝐾 ⊂ C. Then there exists 𝑛(𝐾) ∈ N such that for all 𝑛 ≥ 𝑛(𝐾) we
have −𝑧/𝑛 ∈ 𝐵1 (0) for every 𝑧 ∈ 𝐾 . We conclude∑︁

𝑛≥𝑛(𝐾 )
sup
𝑧∈𝐾

��� [1 + 𝑧

𝑛

]
e−𝑧/𝑛 − 1

��� ≤ e sup
𝑧∈𝐾

|𝑧 |2
∑︁

𝑛≥𝑛(𝐾 )

1
𝑛2 < ∞.

By definition this shows the locally normal convergence of the infinite product 𝐻.

Date: October 28, 2024.
1One can show that the limit 𝛾 := lim𝑛→∞

∑𝑛
𝑘=1 1/𝑘 − log(𝑛) exists (which is called Euler–Mascheroni

constant). Then Γ (𝑧) := 𝑒−𝛾𝑧/𝐻 (𝑧) yields an alternative representation of the Eulerian Γ-function for every
𝑧 ∈ C with ℜ𝑧 > 0.
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Homework 5.3 (Sine product formula). The goal of this exercise is to derive the following
product formula for every 𝑧 ∈ C:

sin(𝜋𝑧) = 𝜋𝑧
∞∏
𝑛=1

[
1 − 𝑧2

𝑛2

]
.

This will be done in several steps.
a. Use the partial fraction decomposition of 𝜋2/sin2 (𝜋𝑧) from Homework 3.2 to show

the following identity for every 𝑧 ∈ C \ Z, with a suitable notion of convergence for
the series on the right hand side2:

𝜋 cot(𝜋𝑧) = 1
𝑧
+

∞∑︁
𝑛=1

2𝑧
𝑧2 − 𝑛2 .

b. For 𝑛 ∈ N, define the function 𝑓𝑛 : C → C by 𝑓𝑛 (𝑧) := 1 − 𝑧2/𝑛2. Compute the
logarithmic derivative 𝑓 ′/ 𝑓 for the assignment 𝑓 (𝑧) := 𝜋𝑧

∏∞
𝑛=1 𝑓𝑛 (𝑧).

c. Conclude by comparing suitable terms.

Solution. a. Recall cot(𝜋𝑧) = cos(𝜋𝑧)/sin(𝜋𝑧) for every 𝑧 ∈ C \ Z, thus

𝜋 cot(𝜋𝑧)′ = −𝜋2 sin2 (𝜋𝑧) + cos2 (𝜋𝑧)
sin2 (𝜋𝑧)

= − 𝜋2

sin2 (𝜋𝑧)
.

Inserting the result from Homework 3.2, we deduce every 𝑧 ∈ C \ Z obeys

𝜋 cot(𝜋𝑧)′ = −
∑︁
𝑛∈Z

1
(𝑧 − 𝑛)2 = − 1

𝑧2
−
∑︁
𝑛∈N

1
(𝑧 − 𝑛)2 + 1

(𝑧 + 𝑛)2 = − 1
𝑧2

− 2
∑︁
𝑛∈N

𝑧2 + 𝑛2

(𝑧2 − 𝑛2)2 .

As shown in Homework 3.2, the right-hand side series converges locally uniformly (and
locally normally, which allows us to rearrange terms as above) on C \ Z. As C \ Z is a
domain we can apply the hint to the sequence (𝑔𝑘)𝑘∈N, where the function 𝑔𝑘 : C \ Z → C
is defined by the assignment

𝑔𝑘 (𝑧) :=
1
𝑧
+ 2

𝑘∑︁
𝑛=1

𝑧

𝑧2 − 𝑛2 .

However, it is quite difficult to evaluate the limit of 𝑔𝑘 (𝑧0) as 𝑘 → ∞ for 𝑧0 ∈ C \ Z as
𝑘 → +∞. Hence we use the hint in an abstract way. Note that for 𝑧 ∈ C \ Z, we have

𝑔′𝑘 (𝑧) = − 1
𝑧2

+ 2
𝑘∑︁
𝑛=1

𝑧2 − 𝑛2 − 2𝑧2

(𝑧2 − 𝑛2)2 = − 1
𝑧2

− 2
𝑘∑︁
𝑛=1

𝑧2 + 𝑛2

(𝑧2 − 𝑛2)2 .

In particular, we obtain 𝑔′
𝑘
→ 𝜋 cot(𝜋 ·)′ locally uniformly on C \ Z as 𝑘 → ∞. Moreover,

the sequence (𝑔𝑘 (1/2))𝑘∈N is bounded. Hence, by compactness there exists 𝑐 ∈ C such that
𝑔𝑘 (1/2) → 𝑐 as 𝑘 → ∞ along a subsequence we do not relabel3. By the hint,

lim
𝑘→∞

𝑔𝑘 = 𝜋 cot(𝜋 ·) + 𝑐 − 𝜋 cot
( 𝜋
2

)
︸          ︷︷          ︸

=: 𝑐0

locally uniformly on C \ Z, so that

𝑧 cot(𝜋𝑧) = 1
𝑧
+

𝑘∑︁
𝑛=1

2𝑧
𝑧2 − 𝑛2 + 𝑐0. (5.1)

2Hint. You may use the following fact without proof. If 𝐷 ⊂ C is a domain, ( 𝑓𝑛 )𝑛∈N is a sequence of
continuously differentiable functions 𝑓𝑛 : 𝐷 → C, 𝑓 : 𝐷 → C is continuously differentiable, 𝑓𝑛 (𝑧0 ) → 𝑓 (𝑧0 ) as
𝑛→ ∞ for some 𝑧0 ∈ 𝐷, and 𝑓 ′𝑛 → 𝑓 ′ locally uniformly as 𝑛→ ∞, then 𝑓𝑛 → 𝑓 locally uniformly as 𝑛→ ∞.

3Later the conclusions will be the same for all subsequences. This will show convergence of the entire sequence,
as discussed in the lecture.
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We claim 𝑐0 = 0. To this aim, we observe note that 𝜋 cot(𝜋𝑧) has a first-order pole in
𝑧 = 0. Hence its Laurent series at the origin reads

𝜋 cot(𝜋𝑧) =
∞∑︁
𝑗=−1

𝑎 𝑗 𝑧
𝑗 .

From (5.1) we obtain 𝑎−1 = 1 and 𝑎0 = 𝑐0. Another formula for 𝑎0 is

𝑎0 =
d
d𝑧

����
0
𝑧 𝜋 cot(𝜋𝑧) = lim

𝑧→0
𝜋 lim
𝑧→0

[
cot(𝜋𝑧) − 𝜋𝑧

sin2 (𝜋𝑧)

]
= 𝜋 lim

𝑧→0

[ cos(𝜋𝑧) sin(𝜋𝑧) − 𝜋𝑧
sin2 (𝜋𝑧)

]
.

Since cos(𝜋𝑧) = 1 + O(𝑧2) as 𝑧 → 0 and sin(𝜋𝑧) = 𝜋𝑧 + O(𝑧3) as 𝑧 → 0, we obtain
cos(𝜋𝑧) sin(𝜋𝑧) − 𝜋𝑧 = O(𝑧3) as 𝑧 → 0. The above equality yields 𝑎0 = 𝑐0 = 0 as claimed.

b. Note that for 𝑧 ∈ C \ {±𝑛} we have
𝑓 ′𝑛 (𝑧)
𝑓𝑛 (𝑧)

=
2𝑧

𝑧2 − 𝑛2

Next, we argue the product 𝑓 = 𝜋𝑧
∏∞
𝑛=1 𝑓𝑛 converges locally normally on C. Indeed, let

𝐾 ⊂ C be compact. Then
∞∑︁
𝑛=1

sup
𝑧∈𝐾

��� 𝑧2
𝑛2

��� ≤ sup
𝑧∈𝐾

|𝑧 |2
∞∑︁
𝑛=1

1
𝑛2 < ∞.

Hence we can apply Proposition 3.12 from the lecture notes, yielding

𝑓 ′ (𝑧)
𝑓 (𝑧) =

1
𝑧
+

∞∑︁
𝑛=1

𝑓 ′𝑛 (𝑧)
𝑓𝑛 (𝑧)

=
1
𝑧
+

∞∑︁
𝑛=1

2𝑧
𝑧2 − 𝑛2

for every 𝑧 ∈ C \ Z, where we used that 𝑍 ( 𝑓 ) = Z by Lemma 3.11.
c. Note that the logarithmic derivative of the assignment ℎ(𝑧) := sin(𝜋𝑧) on C \ Z is

given by 𝜋 cot(𝜋𝑧). Hence a. and b. imply
ℎ′

ℎ
=
𝑓 ′

𝑓

on the domain C \ Z. In particular, on this set we have[ ℎ
𝑓

] ′
=
ℎ′ 𝑓 − ℎ 𝑓 ′

𝑓 2 = 0.

Thus there exists a constant 𝑐 ∈ C such that ℎ = 𝑐 𝑓 on C \ Z and by the identity theorem
this extends to the entire complex plane. In order to conclude we have to show 𝑐 = 1. To
this aim, note that whenever 𝑧 ≠ 0 we can write

sin(𝜋𝑧)
𝜋𝑧

= 𝑐

∞∏
𝑛=1

[
1 − 𝑧2

𝑛2

]
.

Letting 𝑧 → 0 we deduce 𝑐 = 1, which finishes the proof.

Homework 5.4 (Consequences of the sine product formula). Use the product formula from
the previous exercise to show the following statements.

a.
𝜋

2
=

∞∏
𝑛=1

4𝑛2

4𝑛2 − 1
.

b. cos(𝜋𝑧) =
∞∏
𝑛=1

[
1 − 4𝑧2

(2𝑛 − 1)2

]
.

c.
𝜋2

6
=

∞∑︁
𝑛=1

1
𝑛2

4.

4Hint. Use a Taylor expansion.
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Solution. a. We insert 𝑧 = 1/2 into the sine product formula

sin(𝜋𝑧) = 𝜋𝑧
∞∏
𝑛=1

[
1 − 𝑧2

𝑛2

]
and obtain

1 =
𝜋

2

∞∏
𝑛=1

4𝑛2 − 1
4𝑛2 .

Taking the inverse of the infinite product (which is allowed term by term as the limit is not
zero) we deduce the claimed formula.

b. Note that by the double angle formula, every 𝑧 ∈ C satisfies sin(2𝑧) = 2 sin(𝑧) cos(𝑧).
(This is well-known for 𝑧 ∈ R and extends to 𝑧 ∈ C by the identity theorem. Thus,

sin(𝜋𝑧) cos(𝜋𝑧) = 1
2

2𝜋𝑧
∞∏
𝑛=1

[
1 − 4𝑧2

𝑛2

]
= 𝜋𝑧

∞∏
𝑛=1

[
1 − 4𝑧2

(2𝑛)2

] ∞∏
𝑛=1

[
1 − 4𝑧2

(2𝑛 − 1)2

]
= sin(𝜋𝑧)

∞∏
𝑛=1

[
1 − 4𝑧2

(2𝑛 − 1)2

]
.

The claim follows from the identity theorem.
c. Let us rewrite the product formula as a Taylor series. Locally uniformly on C,

lim
𝑚→∞

𝑚∑︁
𝑛=1

(−1)𝑛−1 (𝜋𝑧)2𝑛−1

(2𝑛 − 1)! = sin(𝜋𝑧)

= lim
𝑚→+∞

𝜋𝑧

𝑚∏
𝑛=1

[
1 − 𝑧2

𝑛2

]
= 𝜋𝑧 − lim

𝑚→+∞

[
𝜋𝑧

𝑚∑︁
𝑛=1

𝑧2

𝑛2 + 𝑔𝑚 (𝑧)
]
,

where 𝑔𝑚 (𝑧) is the remainder. Since the series
∑𝑚
𝑛=1 𝑧

2/𝑛2 converges locally uniformly, also
𝑔𝑚 converges locally uniformly on C to some function 𝑔 : C → C. Moreover, each 𝑔𝑚 has
a zero of order 5 in zero, so that 𝑔 (𝑘 )𝑚 (0) = 0 for all 0 ≤ 𝑘 ≤ 4. From Theorem 1.5 in the
lecture notes we deduce 𝑔 has a zero of order at least 5 in zero. Hence we can write

∞∑︁
𝑛=1

(−1)𝑛−1 (𝜋𝑧)2𝑛−1

(2𝑛 − 1)! = 𝜋𝑧 − 𝜋𝑧3
∞∑︁
𝑛=1

1
𝑛2 +

∞∑︁
𝑛=5

𝑎𝑛𝑧
𝑛.

Comparing the coefficient of 𝑧3 yields the claim.


